Add like
Add dislike
Add to saved papers

Establishment of a precise novel brain trauma model in a large animal based on injury of the cerebral motor cortex.

BACKGROUND: Animal models are essential in simulating clinical diseases and facilitating relevant studies.

NEW METHOD: We established a precise canine model of traumatic brain injury (TBI) based on cerebral motor cortex injury which was confirmed by neuroimaging, electrophysiology, and a series of motor function assessment methods. Twelve beagles were divided into control, sham, and model groups. The cerebral motor cortex was identified by diffusion tensor imaging (DTI), a simple marker method, and intraoperative electrophysiological measurement. Bony windows were designed by magnetic resonance imaging (MRI) scan and DTI. During the operation, canines in the control group were under general anesthesia. The canines were operated via bony window craniotomy and dura mater opening in the sham group. After opening of the bony window and dura mater, the motor cortex was impacted by a modified electronic cortical contusion impactor (eCCI) in the model group.

RESULTS: Postoperative measurements revealed damage to the cerebral motor cortex and functional defects. Comparisons between preoperative and postoperative results demonstrated that the established model was successful.

COMPARISON WITH EXISTING METHOD(S): Compared with conventional models, this is the first brain trauma model in large animal that was constructed based on injury to the cerebral motor cortex under the guidance of DTI, a simple marker method, and electrophysiology.

CONCLUSION: The method used to establish this model can be standardized to enhance reproducibility and provide a stable and precise large animal model of TBI for clinical and basic research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app