Add like
Add dislike
Add to saved papers

Testing the dogma that total phospholipid fatty acid composition of blood plays a role in kidney stone pathogenesis, using a high-low risk human model: results from a pilot study.

Urolithiasis 2018 June 30
Previous studies have suggested that ω-3 and ω-6 polyunsaturated fatty acid (PUFA) composition in plasma and red blood cell (RBC) total phospholipids plays a role in urolithiasis. Our aim was to test the robustness of this dogma by retrospectively comparing baseline profiles of these parameters in subjects from high- and low-stone-risk groups. The documented difference in stone occurrence in white (relatively common) (W) and black (rare) (B) subjects prompted us to select these groups as the high-low risk model for the study. Blood and urine samples were obtained from ten subjects in each group and were analysed for PUFAs and stone risk factors, respectively. Concentrations of linoleic acid (LA), eicosadienoic acid (EDA) and arachidonic acid (AA) in plasma and or/RBC total phospholipids were significantly higher in B. Differences in other PUFA profiles were also observed. There was no inter-group difference in AA/LA ratios. Urinary oxalate was significantly higher while urinary phosphate was significantly lower in B. We speculate that elevated AA in B might arise because of a possibly enhanced elongation of LA to EDA, as well as an enhanced ∆-8-desaturation of EDA to dihomo-gamma-linolenic acid (DGLA), which is the immediate precursor of AA. Alternatively, we speculate that the ∆-5-desaturation step of DGLA to AA might be more highly activated in this group. Irrespective of the mechanism, our observed inter-group differences in phospholipid PUFA composition are in conflict with previously published dogma which relates PUFA characteristics to high- and low-stone risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app