Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Diazepam reverses increased anxiety-like behavior, social behavior deficit, and dopamine dysregulation following withdrawal from acute amphetamine.

Psychostimulants such as amphetamine (AMPH) increase dopamine (DA) release from ventral tegmental area (VTA) neurons, which is associated with their acute reinforcing actions. This positive state is followed by a negative affective state during the withdrawal period each time the drug is taken (i.e., opponent process theory). AMPH withdrawal is accompanied by symptoms of anxiety and depression, which are associated with DA system dysfunction in humans and animal models. Most studies have focused on the negative affective state after withdrawal from chronic drug administration; yet, this negative state appears even after a drug is taken for the first time in both humans and rodents. In rats, withdrawal from a single dose of AMPH (2 mg/kg) increases forced swim test immobility and decreases the number of spontaneously active VTA DA neurons up to 48 h post-withdrawal. In the current study, acute AMPH withdrawal was found to increase anxiety-like behavior in the elevated plus maze (EPM), reduce social cage time in the three-chambered social approach test (SAT), and attenuate VTA population activity. The effects of diazepam, a drug commonly used to treat anxiety disorders, were tested on anxiety-like and social behavior as well as VTA DA neuron activity following acute AMPH withdrawal. A single (5 mg/kg) dose of diazepam circumvented the neurobehavioral effects induced by acute AMPH withdrawal, as demonstrated by increased open arm time and social cage time as well as normalized VTA DA activity comparable to controls, suggesting that these neurobehavioral effects of acute AMPH withdrawal reflect an anxiety-like state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app