Add like
Add dislike
Add to saved papers

Electrically Driven Reversible Magnetic Rotation in Nanoscale Multiferroic Heterostructures.

ACS Nano 2018 July 25
Electrically driven magnetic switching (EDMS) is highly demanded for next-generation advanced memories or spintronic devices. The key challenge is to achieve repeatable and reversible EDMS at sufficiently small scale. In this work, we reported an experimental realization of room-temperature, electrically driven, reversible, and robust 120° magnetic state rotation in nanoscale multiferroic heterostructures consisting of a triangular Co nanomagnet array on tetragonal BiFeO3 films, which can be directly monitored by magnetic force microscope (MFM) imaging. The observed reversible magnetic switching in an individual nanomagnet can be triggered by a small electric pulse within 10 V with an ultrashort time of ∼10 ns, which also demonstrates sufficient switching cycling and months-long retention lifetime. A mechanism based on synergic effects of interfacial strain and exchange coupling plus shape anisotropy was also proposed, which was also verified by micromagnetic simulations. Our results create an avenue to engineer the nanoscale EDMS for low-power-consumption, high-density, nonvolatile magnetoelectric memories and beyond.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app