Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bitter melon seed oil increases mitochondrial content in gastrocnemius muscle and improves running endurance in sedentary C57BL/6J mice.

The α-eleostearic acid (α-ESA) in bitter melon seed oil (BMSO) is efficiently converted by the body into rumenic acid. The objective of this study was to investigate effects of BMSO on skeletal muscle fiber-type switch and endurance capacity in mice, with or without exercise training. In a 3×2 factorial design, C57BL/6J mice were fed a 30% high-fat diet composed of soybean oil, butter or a 1:1 mixture of BMSO and soybean oil, i.e., SB, BT and BM diets, respectively, and were allocated to be sedentary or undergo exercise (Ex). The Ex groups received a 15-min training regimen on a motorized treadmill 5 times a week. After 3-week intervention, endurance capacity was evaluated (total running time and distance until exhaustion). Mice fed a BM diet had significantly less body fat, with increased muscle percentage and improved endurance capacity. Combining sedentary and Ex groups, mice fed a BM diet ran 33% longer and 50% further than those fed SB, or 25% longer and 36% further than those fed BT (P<.01). The BM-diet-increased gastrocnemius cytochrome c protein and mitochondrial DNA content was more prominent in sedentary than in trained mice. Histochemical staining shows sedentary BM-fed mice had a higher succinate dehydrogenase activity among groups. Based on a reporter assay, rumenic acid, rather than α-ESA itself, activated PPARδ ligand binding domain. We concluded that BMSO improved endurance capacity via stimulation of mitochondrial biogenesis and function, potentially influencing muscle metabolism and fiber-type composition in sedentary mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app