Add like
Add dislike
Add to saved papers

Combining microscopy and biochemistry to study meiotic spindle assembly in Drosophila oocytes.

Studies using Drosophila have played pivotal roles in advancing our understanding of molecular mechanisms of mitosis throughout the past decades, due to the short generation time and advanced genetic research of this organism. Drosophila is also an excellent model to study female meiosis in oocytes. Pathways such as the acentrosomal assembly of the meiotic spindle in oocytes are conserved from fly to humans. Collecting and manipulating large Drosophila oocytes for microscopy and biochemistry are both time and cost efficient, offering advantages over mouse or human oocytes. Therefore, Drosophila oocytes serve as an excellent platform for molecular studies of female meiosis using a combination of genetics, microscopy, and biochemistry. Here we describe key methods to observe the formation of the meiotic spindle either in fixed or in live oocytes. Moreover, biochemical methods are described to identify protein-protein interactions in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app