Add like
Add dislike
Add to saved papers

Intraperitoneal oxaliplatin administration inhibits the tumor immunosuppressive microenvironment in an abdominal implantation model of colon cancer.

Recent studies have demonstrated that some chemotherapeutic drugs can enhance antitumor immunity by eliminating and inactivating immunosuppressive cells. Oxaliplatin (OXP) induces immunogenic cell death by increasing the immunogenicity of cancer cells. However, the effects of OXP on the tumor immunosuppressive microenvironment remain unclear. The aim of the present study was to evaluate the antitumor activity of OXP by intraperitoneal (i.p.) administration in an abdominal implantation model of colon cancer and tested the tumor immune microenvironment to observe whether OXP affects the local immune inhibitory cell populations. Abdominal metastasis models were established by inoculation of CT26 cells. The antitumor efficacy of OXP and the tumor immune microenvironment were evaluated. The tumors and spleens of mice were harvested for flow cytometric analysis. Cluster of differentiation (CD)‑8+CD69+ T cells, regulatory T cells (Tregs), CD11b+F4/80high macrophages and myeloid‑derived suppressor cells (MDSCs) were evaluated by flow cytometric analysis. In vivo i.p. administration of OXP inhibited tumor growth in the abdominal metastasis model. Furthermore, OXP was observed to increase tumor‑infiltrating activated CD8+ T cells in tumors, decrease CD11b+F4/80high macrophages in tumors and decrease MDSCs in the spleen. These results suggested that i.p. administration of OXP alone may inhibit tumor cell growth and induce the antitumor immunostimulatory microenvironment by eliminating immunosuppressive cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app