JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Two Ligand Binding Sites in Serotonin Transporter Revealed by Nanopharmacological Force Sensing.

The number of ligand binding sites in neurotransmitter-sodium symporters has been determined by crystal structure analysis and molecular pharmacology with controversial results. Here, we designed molecular tools to measure the interaction forces between the serotonin transporter (SERT) and S-citalopram on the single-molecule level by means of atomic force microscopy. Force spectroscopy allows for the extraction of dynamic information under physiological conditions which is inaccessible via X-ray crystallography. Two populations of distinctly different binding strength between S-citalopram and SERT were demonstrated in Na+ -containing buffer. In Li+ -containing buffer, SERT showed merely low-force interactions, whereas the vestibular mutant SERT-G402H only displayed the high force population. These observations provide physical evidence for the existence of two different binding sites in SERT when tested under near-physiological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app