Add like
Add dislike
Add to saved papers

Analysis and Improvement of a Dual-Core Photonic Crystal Fiber Sensor.

Sensors 2018 June 28
The characteristics of the dual-core photonic crystal fiber (PCF) sensor are studied using the finite element method (FEM), and the structure is improved according to the numerical simulation results. The results show that whether or not the four large air holes far away from the geometry center of the PCF are filled with analyte has no influence on the wavelength sensitivity of the sensor which means those holes can be replaced by small air holes. The wavelength sensitivity can be tuned by adjusting the sizes of the other large air holes which are as for liquid holes. The dynamic detection range of the refractive index (RI) is from 1.33 to 1.51. In particular, high linearity is obtained in the range of 1.44 to 1.51. The sensitivity is as high as 6021 nm/RIU when the liquid holes are the smallest. When liquid holes are tangential with the envelope of first layer air holes, the wavelength sensitivity is 4028 nm/RIU, and the coefficient of determination (R²) is 0.99822 when the RI of the analyte varies from 1.44 to 1.51 which shows that high sensitivity and good linearity are both obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app