Add like
Add dislike
Add to saved papers

Overexpression of the mitochondrial Mg channel MRS2 increases total cellular Mg concentration and influences sensitivity to apoptosis.

The mechanism of action of the mitochondrial Mg channel MRS2 and its involvement in cell viability remain unclear. Deletion of MRS2 has been reported to abolish Mg influx into mitochondria, to induce functional defects in mitochondrial organelles, and to result in cell death. We evaluated whether MRS2 expression had an impact on total Mg cellular content by inducing the overexpression of MRS2 in HEK-293 cells. We observed a remarkable increase of total intracellular Mg concentration in cells overexpressing MRS2 compared with control cells. In order to investigate whether and in what manner the detected Mg increment was involved in the MRS2 influence on cell viability, we treated MRS2-overexpressing cells with two known apoptotic inducers. We found that cells overexpressing the MRS2 channel became less responsive to these pharmacological insults. Our experimental evidence indicates that the MRS2 channel controls overall intracellular Mg levels, the alteration of which might have a role in the molecular signaling leading to apoptotic cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app