Add like
Add dislike
Add to saved papers

Thermo and halo tolerant laccase from Bacillus sp. SS4: Evaluation for its industrial usefulness.

Laccases are unable to oxidize the non-phenolic components of complex lignin polymer due to their less redox potential (E0). Catalytic efficiency of laccases relies on the mediators that potentiates their oxidative strength; for breaking the recalcitrant lignin. Laccase from Bacillus sp. SS4 was evaluated for its compatibility with natural and synthetic mediators. (2 mM). It was found that acetosyringone, vanillin, orcinol and veratraldehyde have no adverse effect on the laccase activity up to 3 h. Syringaldehyde, p-coumaric acid, ferulic acid and hydroquinone reduced the enzyme activity ≥50% after 1.0 h, but laccase activity remained 100 to ~120% in the presence of synthetic mediators HBT (1-Hydroxylbenzotrizole) and ABTS. (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) after 3 h. MgSO4 and MnSO4 (40 mM) increased the enzyme activity 3.5 fold and the enzyme possessed ≥70% activity at a very high concentration. (2 M) of NaCl. The enzyme retained 40-110% activity in the presence of 10% DMSO (dimethylsulfoxide), acetone, methanol and ethyl acetate. On the other hand, CuSO4 (100 μM) induced the laccase production 8.5 fold without increasing the growth of bacterial cells. Laccase from SS4 appropriately decolorized the indigo carmine (50 μM) completely in the presence of acetosyringone (100 μM) within 10 min and 25% decolorization was observed after 4 h without any mediator.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app