Add like
Add dislike
Add to saved papers

Molecular vibration as a novel explanatory mechanism for the expression of animal colouration.

Animal colouration is characterized by the concentration of pigments in integumentary structures and by the nanoscale arrangement of constitutive elements. However, the influence of molecular vibration on colour expression has been overlooked in biology. Molecular vibration occurs in the infrared spectral region, but vibrational and electronic properties can influence each other. Thus, the vibration of pigment molecules may also affect their absorption properties and the resulting colours. We calculated for the first time the relative contribution of molecular vibration (by means of Raman spectroscopy) and concentration (by means of HPLC) of melanin polymers, the most common animal pigments, to generate diversity in plumage colour in 47 species of birds. Vibrational characteristics explained >9 times more variance in colour expression than the concentration of melanins. Additionally, we modelled melanin Raman spectra on the basis of the chemical structure of their constituent monomers and calculated the Huang-Rhys factors for each vibrational mode, which indicate the contribution of these modes to the electronic spectra responsible for the resulting colours. High Huang-Rhys factors frequently coincided with the vibrational modes of melanin monomers. Our results can be explained by the influence of molecular vibration on the absorption properties of melanins. The colour of organisms may thus mainly result from the vibrational properties of their molecules and only residually from their concentration. As a given melanin concentration can give rise to different colours because different structural melanin conformations can present different vibrational characteristics, vibrational effects may favour phenotypic plasticity and thus constitute an important evolutionary force.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app