Add like
Add dislike
Add to saved papers

Altered birefringence of peripapillary retinal nerve fiber layer in multiple sclerosis measured by polarization sensitive optical coherence tomography.

Background: The retina has been used to study the pathophysiology of multiple sclerosis (MS). Peripapillary retinal nerve fiber layer (pRNFL) thinning has been suggested as an ocular biomarker of neurodegeneration in MS. The goal of this project was to determine the birefringence of the pRNFL by measuring the fiber birefringence using polarization sensitive optical coherence tomography (PS-OCT).

Methods: Sixty-six MS patients without history of optic neuritis (age: 39.9 ± 11.0 yrs. old, 53 females and 13 males) and 66 age- and gender-matched normal controls (age: 40.7 ± 11.4 yrs. old) were recruited. Custom built PS-OCT was used to measure phase retardation per unit depth (PR/UD, proportional to the birefringence) and pRNFL thickness in each quadrant of the pRNFL. In addition, clinical manifestation was used to correlate with the pRNFL birefringence.

Results: The pRNFL was thinner in the temporal and inferior quadrants in MS patients compared with normal controls ( P  < 0.05). The PR/UD of the pRNFL was significantly decreased in MS patients (P < 0.05) in all quadrants except for the nasal quadrant. In both groups, the PR/UD from all four quadrants was not related to the averaged pRNFL thickness ( P  > 0.05). In MS patients, the PR/UD was not related to the expanded disability status scale (EDSS) nor disease duration (r ranged from - 0.17 to 0.02, P  > 0.05).

Conclusion: This is the first study using PS-OCT to study the pRNFL birefringence in MS patients. Decreased birefringence of the pRNFL may indicate microtubule abnormality, and could be a potential biomarker for detecting early neurodegeneration in MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app