Add like
Add dislike
Add to saved papers

Accurate and robust localization for walking robots fusing kinematics, inertial, vision and LIDAR.

Interface Focus 2018 August 7
In this article, we review methods for localization and situational awareness of biped and quadruped robotics. This type of robot is modelled as a free-floating mechanical system subject to external forces and constrained by whole-body distributed rigid contacts. Measurements of the state of the robot can be made using a variety of sensor information-such as kinematics (the sensing of the joint angles of the robot), contact force (pressure sensors in the robot's feet), accelerometers and gyroscopes as well as external sensors such as vision and LIDAR. This high-frequency state estimate is then passed to the control system of the robot to allow it to traverse terrain or manipulate its environment. In this article, we describe the development of an estimator for the Boston Dynamics Atlas humanoid robot. It was later adapted to the HyQ2 quadruped, developed by the Istituto Italiano di Tecnologia. Some discussion is given as to future trends while also considering briefly the relationship with biological systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app