Add like
Add dislike
Add to saved papers

Consequences on aging process and human wellness of generation of nitrogen and oxygen species during strenuous exercise.

Impairment of antioxidant defense system and increase in metabolic rate and production of reactive oxygen species have been demonstrated in strenuous exercise. Both at rest and during contractile activity, skeletal muscle generates a very complex set of reactive nitrogen and oxygen species; the main generated are superoxide and nitric oxide. The nature of the contractile activity influences the pattern and the magnitude of this reactive oxygen and nitrogen species (ROS) generation. The intracellular pro-oxidant/antioxidant homeostasis undergoes alteration owing to strenuous exercise and the major identified sources of intracellular free radical generation during physical activity are the mitochondrial electron transport chain, polymorphoneutrophil, and xanthine oxidase. Reactive oxygen species increased tissue susceptibility to oxidative damage and pose a serious threat to the cellular antioxidant defense system. The possible dangerous consequences of the aging process and human wellness are emphasized in this review.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app