Add like
Add dislike
Add to saved papers

Genomic structures of dysplastic nodule and concurrent hepatocellular carcinoma.

Human Pathology 2018 June 25
Although high-grade dysplastic nodule (HGDN) is a preneoplastic lesion that precedes hepatocellular carcinoma (HCC), the genomic structures of HGDN in conjunction with HCC remain elusive. The objective of this study was to identify genomic alterations of HGDN and its difference from HCC that may drive HGDN progression to HCC. We analyzed 16 regions of paired HGDN and HCC from 6 patients using whole-exome sequencing to find somatic mutation and copy number alteration (CNA) profiles of HGDN and HCC. The number of mutations, driver mutations, and CNAs of HGDNs were not significantly different from those of HCCs. We identified that the CNA gain of 1q25.3-1q42.13 was predominant in the HCCs compared to that in the HGDNs. Two cases (one nodule-in-nodule case and another case with closely attached HCC and HGDN) showed several overlapped driver mutations (CTNNB1 and CEBPA) and CNAs (losses of CDKN2A, RB1 and TP53) between HGDNs and HCCs, suggesting their roles in the early HCC development. The other 4 cases with spatially separated HCCs and HGDNs showed few overlapped alterations between the paired HCCs and HGDNs. Mutations in ERBB2 and CCND1, and CNAs (gains of CTNNB1, MET and SMO and losses of PTEN, TP53 and SETD2) were identified as 'HCC-predominant', suggesting their roles in the progression of HGDN to HCC. Our data show that HCCs are direct descendants of HGDNs in some cases, but there is no direct evidence of such relationship in spatially separated cases. Genomic features of HGDN identified in this study provide a useful resource for dissecting clues for the genetic diagnosis of HGDN and HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app