Add like
Add dislike
Add to saved papers

An Engineered Constitutive Promoter Set with Broad Activity Range for Cupriavidus necator H16.

ACS Synthetic Biology 2018 August 18
Well-characterized promoters with variable strength form the foundation of heterologous pathway optimization. It is also a key element that bolsters the success of microbial engineering and facilitates the development of biological tools like biosensors. In comparison to microbial hosts such as Escherichia coli and Saccharomyces cerevisiae, the promoter repertoire of Cupriavidus necator H16 is highly limited. This limited number of characterized promoters poses a significant challenge during the engineering of C. necator H16 for biomanufacturing and biotechnological applications. In this article, we first examined the architecture and genetic elements of the four most widely used constitutive promoters of C. necator H16 (i.e., P phaC1 , P rrsC , P j5 , and P g25 ) and established a narrow 6-fold difference in their promoter activities. Next, using these four promoters as starting points and applying a range of genetic modifications (including point mutation, length alteration, incorporation of regulatory genetic element, promoter hybridization, and configuration alteration), we created a library of 42 constitutive promoters, all of which are functional in C. necator H16. Although these promoters are also functional in E. coli, they show different promoter strength and hierarchical rank of promoter activity. Subsequently, the activity of each promoter was individually characterized, using l-arabinose-inducible P BAD promoter as a benchmark. This study has extended the range of constitutive promoter activities to 137-fold, with some promoter variants exceeding the l-arabinose-inducible range of P BAD promoter. Not only has the work enhanced our flexibility in engineering C. necator H16, it presented novel strategies in adjusting promoter activity in C. necator H16 and highlighted similarities and differences in transcriptional activity between this organism and E. coli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app