Add like
Add dislike
Add to saved papers

Coenzyme Q10 Influences on the Levels of TNF-α and IL-10 and the Ratio of Bax/Bcl2 in a Menopausal Rat Model Following Lumbar Spinal Cord Injury.

The roles of the immune response and apoptosis as potential mediators of secondary damage in spinal cord injury (SCI) are being investigated. Research is also being done to determine the effects of female gonadal steroids, which decrease during menopause, and antioxidants, such as coenzyme Q10 (CoQ10) on SCI. We hypothesized that in the absence of female gonadal steroids, which provide protection following an SCI, CoQ10 could modulate the expression of cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-10, besides aquaporin-4 (AQP4) water channels in the CNS, which participate in neuroinflammation, as well as the Bax and Bcl2 proteins that are involved in apoptosis at the site of injury. The spinal cord was compressed at the level of the T10 vertebrae and rats were treated by 10 mg/kg/day CoQ10 for 3 weeks after surgery. The TNF-α and IL-10 expressions were studied using an ELISA. Western blot was used to investigate the Bax/Bcl-2 ratio, AQP4. The level of TNF-α significantly decreased following the administration of CoQ10 compared with the level of IL-10. When the treatment group was compared with the OVX-SCI group, the ratio of Bax/Bcl2 significantly decreased in the groups (P < 0.01). Based on our findings, CoQ10 could be used to compensate for the absence of the neuroprotection effects provided by female gonadal steroids via reducing the inappropriate effects of the two main pathways of secondary damage in SCI apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app