Add like
Add dislike
Add to saved papers

The Functional Potential of the Rhizospheric Microbiome of an Invasive Tree Species, Acacia dealbata.

Microbial Ecology 2018 June 10
Plant-microbe interactions mediate both the invasiveness of introduced plant species and the impacts that they have in invaded ecosystems. Although the phylogenetic composition of the rhizospheric microbiome of Acacia dealbata (an invasive Australian tree species) has been investigated, little is known about the functional potential of the constituents of these altered microbial communities. We used shotgun DNA sequencing to better understand the link between bacterial community composition and functional capacity in the rhizospheric microbiomes associated with invasive A. dealbata populations in South Africa. Our analysis showed that several genes associated with plant growth-promoting (PGP) traits were significantly overrepresented in the rhizospheric metagenomes compared to neighbouring bulk soils collected away from A. dealbata stands. The majority of these genes are involved in the metabolism of nitrogen, carbohydrates and vitamins, and in various membrane transport systems. Overrepresented genes were linked to a limited number of bacterial taxa, mostly Bradyrhizobium species, the preferred N-fixing rhizobial symbiont of Australian acacias. Overall, these findings suggest that A. dealbata enriches rhizosphere soils with potentially beneficial microbial taxa, and that members of the genus Bradyrhizobium may play an integral role in mediating PGP processes that may influence the success of this invader when colonizing novel environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app