JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Chromatin mobility upon DNA damage: state of the art and remaining questions.

Current Genetics 2018 June 9
Chromosome organization and chromatin mobility are central to DNA metabolism. In particular, it has been recently shown by several labs that double strand breaks (DSBs) in yeast induce a change in chromatin mobility at the site of the damage. Intriguingly, DSB also induces a global mobility of the genome, at others, potentially undamaged positions. How mobility is regulated and what are the functional outcomes of these global changes in chromatin dynamics are, however, not yet fully understood. We present the current state of knowledge in light of the recent literature and discuss some perspectives opened by these discoveries towards genome stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app