Add like
Add dislike
Add to saved papers

Autotrophic, Heterotrophic, and Mixotrophic Nitrogen Assimilation for Single-Cell Protein Production by Two Hydrogen-Oxidizing Bacterial Strains.

To recover a nitrogen resource from high-ammonia-nitrogen wastewater, two amphitrophic hydrogen-oxidizing bacteria (HOB), Paracoccus denitrificans Y5 and P. versutus D6, capable of nitrogen assimilation for single-cell protein (SCP) production were isolated. These two HOB strains could grow autotrophically with H2 as an electron donor, O2 as an electron acceptor, CO2 as a carbon source, and ammonia nitrogen (NH4 + -N) as a nitrogen source. The cell molecular formulas of strains Y5 and D6 determined by autotrophic cultivation were C3.33 H6.83 O2.58 N0.77 and C2.87 H5.34 O3.17 N0.57 , respectively. The isolated strains could synchronously remove NH4 + -N and organic carbon and produce SCP via heterotrophic cultivation. The rates of removal of NH4 + -N and soluble chemical oxygen demand reached 35.47 and 49.04%, respectively, for Y5 under mixotrophic cultivation conditions with biogas slurry as a substrate. SCP content of strains Y5 and D6 was 67.34-73.73% based on cell dry weight. Compared with soybean meal, the SCP of Y5 contained a variety of amino acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app