Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training.

PURPOSE: Patients with hypoplastic left heart syndrome (HLHS) present a diverse spectrum of aortic arch morphology. Suboptimal geometry of the reconstructed aortic arch may result from inappropriate size and shape of an implanted patch and may be associated with poor outcomes. Meanwhile, advances in diagnostic imaging, computer-aided design, and three-dimensional (3D) printing technology have enabled the creation of 3D models. The purpose of this study is to create a surgical simulation and training model for aortic arch reconstruction.

DESCRIPTION: Specialized segmentation software was used to isolate aortic arch anatomy from HLHS computed tomography scan images to create digital 3D models. Three-dimensional modeling software was used to modify the exported segmented models and digitally design printable customized patches that were optimally sized for arch reconstruction.

EVALUATION: Life-sized models of HLHS aortic arch anatomy and a digitally derived customized patch were 3D printed to allow simulation of surgical suturing and reconstruction. The patient-specific customized patch was successfully used for surgical simulation.

CONCLUSIONS: Feasibility of digital design and 3D printing of patient-specific patches for aortic arch reconstruction has been demonstrated. The technology facilitates surgical simulation. Surgical training that leads to an understanding of optimal aortic patch geometry is one element that may potentially influence outcomes for patients with HLHS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app