Add like
Add dislike
Add to saved papers

The naturally derived small compound Osthole inhibits osteoclastogenesis to prevent ovariectomy-induced bone loss in mice.

OBJECTIVE: This study was to determine the bone protective effects and underlying mechanisms of Osthole (OT) in ovariectomized (OVX) mice. We found that the inhibitory effects of OT on receptor activator of nuclear factor kappa-B ligand (RANKL)-activated osteoclastogenesis are responsible for its bone protective effects in OVX mice.

METHODS: Eight-week-old mice were ovariectomized and OT (10 mg/kg/d) was intraperitoneally administrated to OVX mice 7 days after the surgery and were sacrificed at the end of the 3 months. Osteoclasts were generated from primary bone marrow macrophages (BMMs) to investigate the inhibitory effects of OT. The activity of RANKL-activated signaling was simultaneously analyzed in vitro and in vivo using immunohistochemistry, Western blot, and PCR assays.

RESULTS: OT dose dependently inhibited RANKL-mediated osteoclastogenesis in BMM cultures. OT administration attenuated bone loss (mg Ha/cm: 894.68 ± 33.56 vs 748.08 ± 19.51, P < 0.05) in OVX mice. OT inhibits osteoclastogenesis (Oc.N/per view area: 72 ± 4.3 vs 0.8 ± 0.4, P < 0.05) and bone resorption activity (bone resorbed percentages %, 48.56 ± 7.25 vs 3.25 ± 1.37, P < 0.05) from BMMs. Mechanistically, OT inhibited the expressions of nuclear factor of activated T-cells c1 (NFATc1) and c-Fos. Moreover, OT suppressed the expression of RANKL-induced osteoclast marker genes, including matrix metalloproteinase 9 (MMP9), Cathepsin K (Ctsk), tartrate-resistant acid phosphatase (TRAP), and carbonic anhydrase II (Car2).

CONCLUSIONS: OT inhibits RANKL-mediated osteoclastogenesis and prevents bone loss in OVX mice. Our findings revealed that OT is a potential new drug for treating postmenopausal osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app