Add like
Add dislike
Add to saved papers

Effect of low concentrations of dissolved oxygen on the activity of denitrifying methanotrophic bacteria.

Chemical energy can be recovered from municipal wastewater as biogas through anaerobic treatment. Effluent from direct anaerobic wastewater treatment at low temperatures, however, still contains ammonium and considerable amounts of dissolved methane. After nitritation, methane can be used as electron donor for denitrification by the anaerobic bacterium 'Candidatus Methylomirabilis oxyfera'. It was shown that in the presence of 0.7% O2, denitrifying methanotrophic activity slightly increased and returned to its original level after oxygen had been removed. At 1.1% O2 , methane consumption rate increased 118%, nitrite consumption rate increased 58%. After removal of oxygen, methane consumption rate fully recovered, and nitrite consumption rate returned to 88%. Therefore, traces of oxygen that bacteria are likely to be exposed to in wastewater treatment are not expected to negatively affect the denitrifying methanotrophic process. 2.0% O2 inhibited denitrifying activity. Nitrite consumption rate decreased 60% and did not recover after removal of oxygen. No clear effect on methane consumption was observed. Further studies should evaluate if intermittent addition of oxygen results in increased growth rates of the slow-growing 'Candidatus Methylomirabilis oxyfera'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app