Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synthesis and Antiviral Evaluation of TriPPPro-AbacavirTP, TriPPPro-CarbovirTP, and Their 1',2'-cis-Disubstituted Analogues.

ChemMedChem 2018 September 7
Herein we describe the synthesis of lipophilic triphosphate prodrugs of abacavir, carbovir, and their 1',2'-cis-substituted carbocyclic analogues. The 1',2'-cis-carbocyclic nucleosides were prepared by starting from enantiomerically pure (1R,2S)-2-((benzyloxy)methyl)cyclopent-3-en-1-ol by a microwave-assisted Mitsunobu-type reaction with 2-amino-6-chloropurine. All four nucleoside analogues were prepared from their 2-amino-6-chloropurine precursors. The nucleosides were converted into their corresponding nucleoside triphosphate prodrugs (TriPPPro approach) by application of the H-phosphonate route. The TriPPPro compounds were hydrolyzed in different media, in which the formation of nucleoside triphosphates was proven. While the TriPPPro compounds of abacavir and carbovir showed increased antiviral activity over their parent nucleoside, the TriPPPro compounds of the 1',2'-cis-substituted analogues as well as their parent nucleosides proved to be inactive against HIV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app