JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Dendritic cell trafficking in tumor-bearing mice.

Prostate cancer is one of the leading causes of cancer deaths, with no curative treatments once it spreads. Alternative therapies, including immunotherapy, have shown limited efficacy. Dendritic cells (DC) have been widely used in the treatment of various malignancies. DC capture antigens and move to the lymphoid organs where they prime naive T cells. Interaction between DC and T cells are most active in lymph nodes and suppression of DC trafficking to lymph nodes impairs the immune response. In this work, we aimed to study trafficking of DC in vivo via various routes of delivery, to optimize the effectiveness of DC-based therapy. A DC labeling system was developed using 1,1'-dioctadecyltetramethyl indotricarbocyanine Iodine for in vivo fluorescent imaging. DC harvested from C57B/6 mice were matured, labeled, and injected intravenously, subcutaneously, or intratumorally, with or without antigen loading with whole tumor lysate, into C57B/6 mice inoculated with RM-1 murine prostate tumor cells. Signal intensity was measured in vivo and ex vivo. Signal intensity at the tumor site increased over time, suggesting trafficking of DC to the tumor with all modes of injection. Subcutaneous injection showed preferential trafficking to lymph nodes and tumor. Intravenous injection showed trafficking to lungs, intestines, and spleen. Subcutaneous injection of DC pulsed with whole tumor lysate resulted in the highest increase in signal intensity at the tumor site and lymph nodes, suggesting subcutaneous injection of primed DC leads to highest preferential trafficking of DC to the immunocompetent organs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app