Journal Article
Research Support, Non-U.S. Gov't
Validation Study
Add like
Add dislike
Add to saved papers

Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction.

Clinical Chemistry 2018 September
BACKGROUND: Clinical performance of the novel high-sensitivity cardiac troponin I (Siemens-hs-cTnI-Centaur) assay is unknown. We aimed to clinically validate the Siemens-hs-cTnI-Centaur assay and develop 0/1-h and 0/2-h algorithms.

METHODS: We enrolled patients presenting to the emergency department with symptoms suggestive of acute myocardial infarction (AMI). Final diagnoses were centrally adjudicated by 2 independent cardiologists including all clinical information twice: first, using serial hs-cTnT (Roche-Elecsys, primary analysis); second, using hs-cTnI (Abbott-Architect, secondary analysis) measurements in addition to the clinically applied (hs)-cTn. Siemens-hs-cTnI-Centaur was measured at presentation, 1 h, and 2 h. The primary objective was a direct comparison of diagnostic accuracy, quantified by the area under the ROC curve (AUC), of Siemens-hs-cTnI-Centaur vs the 2 established hs-cTn assays (Roche-hs-cTnT-Elecsys, Abbott-hs-cTnI-Architect). Secondary objectives included the development of Siemens-hs-cTnI-Centaur-specific 0/1-h and 0/2-h algorithms.

RESULTS: AMI was the final diagnosis in 318 of 1755 (18%) patients (using Roche-hs-cTnT-Elecsys for adjudication). The AUC at presentation for Siemens-hs-cTnI-Centaur was 0.94 (95% CI, 0.92-0.96) and comparable with 0.95 (95% CI, 0.93-0.97) for Roche-hs-cTnT-Elecsys and 0.93 (95% CI, 0.90-0.96) for Abbott-hs-cTnI-Architect. Applying the derived Siemens-hs-cTnI-Centaur 0/1-h algorithm to the validation cohort, 46% of patients were ruled out (sensitivity, 99.1%; 95% CI, 95.3-100), and 18% of patients were ruled in (specificity, 94.1%; 95% CI, 91.8-95.9). The Siemens-hs-cTnI-Centaur 0/2-h algorithm ruled out 55% of patients (sensitivity, 100%; 95% CI, 94.1-100), and ruled in 18% of patients (specificity, 96.0%; 95% CI, 93.1-97.9). Findings were confirmed in the secondary analyses using serial measurements of Abbott-hs-cTnI-Architect for adjudication.

CONCLUSIONS: Diagnostic accuracy and clinical utility of the novel Siemens-hs-cTnI-Centaur assay are high and comparable with the established hs-cTn assays. ClinicalTrials.gov Identifier: NCT00470587.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app