Add like
Add dislike
Add to saved papers

Direct Pathway Cloning Combined with Sequence- and Ligation-Independent Cloning for Fast Biosynthetic Gene Cluster Refactoring and Heterologous Expression.

The need  for new pharmacological lead structures, especially against drug resistances, has led to a surge in natural product research and discovery. New biosynthetic gene cluster capturing methods to efficiently clone and heterologously express natural product pathways have thus been developed. Direct pathway cloning (DiPaC) is an emerging synthetic biology strategy that utilizes long-amplification PCR and HiFi DNA assembly for the capture and expression of natural product biosynthetic gene clusters. Here, we have further streamlined DiPaC by reducing cloning time and reagent costs by utilizing T4 DNA polymerase (sequence- and ligation-independent cloning, SLIC) for gene cluster capture. As a proof of principle, the majority of the cyanobacterial hapalosin gene cluster was cloned as a single piece (23 kb PCR product) using this approach, and predicted transcriptional terminators were removed by simultaneous pathway refactoring, leading to successful heterologous expression. The complementation of DiPaC with SLIC depicts a time and cost-efficient method for simple capture and expression of new natural product pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app