Add like
Add dislike
Add to saved papers

Ion-dependent metabolic responses of Vicia faba L. to salt stress.

Salt-affected farmlands are increasingly burdened by chlorides, carbonates, and sulfates of sodium, calcium, and magnesium. Intriguingly, the underlying physiological processes are studied almost always under NaCl stress. Two faba bean cultivars were subjected to low- and high-salt treatments of NaCl, Na2 SO4 , and KCl. Assimilation rate and leaf water vapor conductance were reduced to approximately 25-30% without biomass reduction after 7 days salt stress, but this did not cause severe carbon shortage. The equimolar treatments of Na+ , K+ , and Cl- showed comparable accumulation patterns in leaves and roots, except for SO4 2- which did not accumulate. To gain a detailed understanding of the effects caused by the tested ion combinations, we performed nontargeted gas chromatography-mass spectrometry-based metabolite profiling. Metabolic responses to various salts were in part highly linearly correlated, but only a few metabolite responses were common to all salts and in both cultivars. At high salt concentrations, only myo-inositol, allantoin, and glycerophosphoglycerol were highly significantly increased in roots under all tested conditions. We discovered several metabolic responses that were preferentially associated with the presence of Na+ , K+ , or Cl- . For example, increases of leaf proline and decreases of leaf fumaric acid and malic acid were apparently associated with Cl- accumulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app