Add like
Add dislike
Add to saved papers

Genetically Encoded Protein Phosphorylation in Mammalian Cells.

Cell Chemical Biology 2018 September 21
Protein phosphorylation regulates diverse processes in eukaryotic cells. Strategies for installing site-specific phosphorylation in target proteins in eukaryotic cells, through routes that are orthogonal to enzymatic post-translational modification, would provide a powerful route for defining the consequences of particular phosphorylations. Here we show that the SepRSv1.0 /tRNAv1.0 CUA pair (created from the Methanococcus maripaludis phosphoseryl-transfer RNA synthetase [MmSepRS]/Methanococcus janaschii [Mj]tRNAGCA Cys pair) is orthogonal in mammalian cells. We create a eukaryotic elongation factor 1 alpha (EF-1α) variant, EF-1α-Sep, that enhances phosphoserine incorporation, and combine this with a mutant of eRF1, and manipulations of the cell's phosphoserine biosynthetic pathway, to enable the genetically encoded incorporation of phosphoserine and its non-hydrolyzable phosphonate analog. Using this approach we demonstrate synthetic activation of a protein kinase in mammalian cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app