Add like
Add dislike
Add to saved papers

Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes.

Animal eyes have evolved to process behaviorally important visual information, but how retinas deal with statistical asymmetries in visual space remains poorly understood. Using hyperspectral imaging in the field, in vivo 2-photon imaging of retinal neurons, and anatomy, here we show that larval zebrafish use a highly anisotropic retina to asymmetrically survey their natural visual world. First, different neurons dominate different parts of the eye and are linked to a systematic shift in inner retinal function: above the animal, there is little color in nature, and retinal circuits are largely achromatic. Conversely, the lower visual field and horizon are color rich and are predominately surveyed by chromatic and color-opponent circuits that are spectrally matched to the dominant chromatic axes in nature. Second, in the horizontal and lower visual field, bipolar cell terminals encoding achromatic and color-opponent visual features are systematically arranged into distinct layers of the inner retina. Third, above the frontal horizon, a high-gain UV system piggybacks onto retinal circuits, likely to support prey capture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app