Add like
Add dislike
Add to saved papers

A brief history of origins and contents of Organically Bound Tritium (OBT) and 14 C in the sediments of the Rhône watershed.

Tritium (3 H) and Carbon-14 (14 C) are radionuclides of natural (cosmogenic) origin that have also been introduced into the environment by humans since the middle of the last century. They are therefore not compounds that have only recently been released into the environment and they do not pose a recognized health threat due to their low radiotoxicity. However, they hold an important place among current concerns because they are being discharged into the environment by the nuclear industry in large quantities compared to other radionuclides. Those both radionuclides partly integrate organic matter during metabolic processes (i.e., photosynthesis) leading to organically bound forms that can be found in sediments. Organically bound tritium (OBT) analyses carried out on the sediments of the Rhône and its tributaries indicate a significant and historical tritium labelling of sedimentary particles all along the Rhône river, as well as in several northern tributaries, in particular the Ognon and the Tille rivers (tributaries of the Saone), the Doubs River and the Loue River (a tributary of the Doubs) and the Arve river. The recorded levels (10 to over 20,000 Bq/L) are very likely to be related to the presence of synthetic tritiated particles (technogenic tritium), which were used in the past in watchmaking workshops. Although overall contamination levels decrease from north to south in the Rhône watershed and fade over time, particularly due to the radioactive decay of tritium, this contamination source of technogenic tritium in the Rhône watersheds is currently still not negligible. Carbon-14 analyses show that the Rhône sediments generally display 14 C levels close to the atmospheric reference values (231 Bq·kg-1 of C in 2015) or even lower in most of cases, and show sporadic and weak labelling near nuclear facilities. The low 14 C levels in the Rhône sediments are most likely related to the solid contributions from tributaries draining areas that are rich in fossil organic matter, and therefore devoid of 14 C. In the Rhône watershed, the presence in solid particles of tritium in a form organically bound to synthetic compounds and of petrogenic (fossil) organic carbon, can potentially alter the apparent assimilation rates to the food chain of these two radionuclides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app