Add like
Add dislike
Add to saved papers

iRSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou's Pseudo components.

Genomics 2018 June 21
Recombination hotspots in a genome are unevenly distributed. Hotspots are regions in a genome that show higher rates of meiotic recombinations. Computational methods for recombination hotspot prediction often use sophisticated features that are derived from physico-chemical or structure based properties of nucleotides. In this paper, we propose iRSpot-SF that uses sequence based features which are computationally cheap to generate. Four feature groups are used in our method: k-mer composition, gapped k-mer composition, TF-IDF of k-mers and reverse complement k-mer composition. We have used recursive feature elimination to select 17 top features for hotspot prediction. Our analysis shows the superiority of gapped k-mer composition and reverse complement k-mer composition features over others. We have used SVM with RBF kernel as a classification algorithm. We have tested our algorithm on standard benchmark datasets. Compared to other methods iRSpot-SF is able to produce significantly better results in terms of accuracy, Mathew's Correlation Coefficient and sensitivity which are 84.58%, 0.6941 and 84.57%. We have made our method readily available to use as a python based tool and made the datasets and source codes available at: https://github.com/abdlmaruf/iRSpot-SF. An web application is developed based on iRSpot-SF and freely available to use at: https://irspot.pythonanywhere.com/server.html.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app