Add like
Add dislike
Add to saved papers

High-frequency wall vibrations in a cerebral patient-specific aneurysm model.

The presence of high-frequency velocity fluctuations in aneurysms have been confirmed by in-vivo measurements and by several numerical simulation studies. Only a few studies have located and recorded wall vibrations in in-vitro experiments using physiological patient models. In this study, we investigated the wall fluctuations produced by a flowing perfusion fluid in a true-to-scale elastic model of a cerebral fusiform aneurysm using a laser Doppler vibrometer (LDV). The model was obtained from patient data. The experimental setup reproduced physiologically relevant conditions using a compliant perfusion system, physiological flow parameters, unsteady flow and a non-Newtonian fluid. Three geometrically identical models with different wall elasticities were used for measurements. The influence of five different flow rates was considered. Wall vibrations were predominantly found at frequencies in the range 40-60 Hz and 255-265 Hz. Their amplitude increased with increasing elasticity of the model, but the spectral peaks remained at about the same frequency. Varying the flow rate produced almost no changes in the frequency domain of the models. The frequency of the spectral peaks varied slightly between points at the lateral wall and at the bottom of the aneurysm. Indeed, embedding the model in a fluid during measurements produced higher and smoother amplitude fluctuations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app