JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Predictive Systems Toxicology.

In this review we address to what extent computational techniques can augment our ability to predict toxicity. The first section provides a brief history of empirical observations on toxicity dating back to the dawn of Sumerian civilization. Interestingly, the concept of dose emerged very early on, leading up to the modern emphasis on kinetic properties, which in turn encodes the insight that toxicity is not solely a property of a compound but instead depends on the interaction with the host organism. The next logical step is the current conception of evaluating drugs from a personalized medicine point of view. We review recent work on integrating what could be referred to as classical pharmacokinetic analysis with emerging systems biology approaches incorporating multiple omics data. These systems approaches employ advanced statistical analytical data processing complemented with machine learning techniques and use both pharmacokinetic and omics data. We find that such integrated approaches not only provide improved predictions of toxicity but also enable mechanistic interpretations of the molecular mechanisms underpinning toxicity and drug resistance. We conclude the chapter by discussing some of the main challenges, such as how to balance the inherent tension between the predicitive capacity of models, which in practice amounts to constraining the number of features in the models versus allowing for rich mechanistic interpretability, i.e., equipping models with numerous molecular features. This challenge also requires patient-specific predictions on toxicity, which in turn requires proper stratification of patients as regards how they respond, with or without adverse toxic effects. In summary, the transformation of the ancient concept of dose is currently successfully operationalized using rich integrative data encoded in patient-specific models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app