Add like
Add dislike
Add to saved papers

Simultaneous characterization of electron density and effective atomic number for radiotherapy planning using stoichiometric calibration method and dual energy algorithms.

Relative electron densities of body tissues (ρe ) for radiotherapy treatment planning are normally obtained by CT scanning of tissue substitute materials (TSMs) and producing a Hounsfield Unit-ρe calibration curve. Aiming for more accurate, simultaneous characterization of ρe and effective atomic number (Zeff ) of real tissues, an in-house phantom (including 10 water solutions plus composite cork as TSMs) was constructed and scanned at 4 kVps. Dual-energy algorithms were applied to 80-140 and 100-140 kVp combination scans, for better differentiation of tissues with same attenuation coefficient at 120 kVp but different ρe and Zeff . Stoichiometric calibration and closeness of the ρe of the 11 TSMs to real tissues (≤ 0.5%) resulted in smaller ρe calculation discrepancies, compared to studies with commercial phantoms (p < 0.024). Applying an energy subtraction algorithm further mitigated errors by spectral separation and reduction of beam hardening artifacts and noise, reducing the mean and standard deviation of the absolute difference of ρe at 80-140 kVp (p < 0.003) and 100-140 kVp (p < 0.0001) scans, compared to 120 kVp scan, respectively. Moreover, a parametrization algorithm decreased the Zeff discrepancy from real tissues at 80-140 kVp scans; for thyroid, the residual error was ≤ 0.18 units of Zeff (vs. 0.2 with the Gammex 467 phantom from a previous study). These results further suggest that a dual-energy algorithm in combination with stoichiometry can decrease errors in calculation of the ρe of real tissues to ameliorate inhomogeneity for dose calculation in radiotherapy treatment planning, especially when the energy spectrum of the X-ray tube of the CT machine is not available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app