Add like
Add dislike
Add to saved papers

Information Spread and Topic Diffusion in Heterogeneous Information Networks.

Scientific Reports 2018 June 23
Diffusion of information in complex networks largely depends on the network structure. Recent studies have mainly addressed information diffusion in homogeneous networks where there is only a single type of nodes and edges. However, some real-world networks consist of heterogeneous types of nodes and edges. In this manuscript, we model information diffusion in heterogeneous information networks, and use interactions of different meta-paths to predict the diffusion process. A meta-path is a path between nodes across different layers of a heterogeneous network. As its most important feature the proposed method is capable of determining the influence of all meta-paths on the diffusion process. A conditional probability is used assuming interdependent relations between the nodes to calculate the activation probability of each node. As independent cascade models, we consider linear threshold and independent cascade models. Applying the proposed method on two real heterogeneous networks reveals its effectiveness and superior performance over state-of-the-art methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app