Add like
Add dislike
Add to saved papers

Roles of Two Glutathione-Dependent 3,6-Dichlorogentisate Dehalogenases in Rhizorhabdus dicambivorans Ndbn-20 in the Catabolism of the Herbicide Dicamba.

The herbicide dicamba is initially demethylated to 3,6-dichlorosalicylate (3,6-DCSA) in Rhizorhabdus dicambivorans Ndbn-20 and is subsequently 5-hydroxylated to 3,6-dichlorogentisate (3,6-DCGA). In the present study, two glutathione-dependent 3,6-DCGA dehalogenases, DsmH1 and DsmH2, were identified in strain Ndbn-20. DsmH2 shared a low identity (only 31%) with the tetrachlorohydroquinone (TCHQ) dehalogenase PcpC from Sphingobium chlorophenolicum ATCC 39723, while DsmH1 shared a high identity (79%) with PcpC. In the phylogenetic tree of related glutathione S -transferases (GSTs), DsmH1 and DsmH2, together with PcpC and the 2,5-dichlorohydroquinone dehalogenase LinD, formed a separate clade. DsmH1 and DsmH2 were synthesized in Escherichia coli BL21 and purified as His-tagged enzymes. Both enzymes required glutathione (GSH) as a cofactor and could 6-dechlorinate 3,6-DCGA to 3-chlorogentisate in vitro DsmH2 had a significantly higher catalytic efficiency toward 3,6-DCGA than DsmH1. Transcription and disruption analysis revealed that DsmH2 but not DsmH1 was responsible for the 6-dechlorination of 3,6-DCGA in strain Ndbn-20 in vivo Furthermore, we propose a novel eta class of GSTs to accommodate the four bacterial dehalogenases PcpC, LinD, DsmH1, and DsmH2. IMPORTANCE Dicamba is an important herbicide, and its use and leakage into the environment have dramatically increased since the large-scale planting of genetically modified (GM) dicamba-resistant crops in 2015. However, the complete catabolic pathway of dicamba has remained unknown, which limits ecotoxicological studies of this herbicide. Our previous study revealed that 3,6-DCGA was an intermediate of dicamba degradation in strain Ndbn-20. In this study, we identified two glutathione-dependent 3,6-DCGA dehalogenases, DsmH1 and DsmH2, and demonstrated that DsmH2 is physiologically responsible for the 6-dechlorination of 3,6-DCGA in strain Ndbn-20. GSTs play an important role in the detoxification and degradation of a variety of endogenous and exogenous toxic compounds. On the basis of their sequence identities, phylogenetic status, and functions, the four bacterial GSH-dependent dehalogenases (PcpC, LinD, DsmH1, and DsmH2) were reclassified as a new eta class of GSTs. This study helps us to elucidate the microbial catabolism of dicamba and enhances our understanding of the diversity and functions of GSTs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app