JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Wall slip for complex liquids - Phenomenon and its causes.

In this review, we tried to qualify different types and mechanisms of wall slip phenomenon, paying particular attention to the most recent publications and issues. The review covers all type of fluids - homogeneous low molecular weight liquids, polymer solution, multi-component dispersed media, and polymer melts. We focused on two basic concepts - fluid-solid wall interaction and shear-induced fluid-to-solid transitions - which are the dominant mechanisms of wall slip. In the first part of the review, the theoretical and numerical studies of correlation of wetting properties and wall slip of low molecular weight liquids and polymeric fluids are reviewed along with some basic experimental results. The influence of nanobubbles and microcavities on the effectiveness of wall slip is illuminated with regard to the bubble dynamics, as well as their stability at smooth and rough interfaces, including superhydrophobic surfaces. Flow of multi-component matter (microgel pastes, concentrated suspensions of solid particles, compressed emulsions, and colloidal systems) is accompanied by wall slip in two cases. The first one is typical of viscoplastic media which can exist in two different physical states, as solid-like below the yield point and liquid-like at the applied stresses exceeding this threshold. Slip takes place at low stresses. The second case is related to the transition from fluid to solid states at high deformation rates or large deformations caused by the strain-induced glass transition of concentrated dispersions. In the latter case, the wall effects consist of apparent slip due to the formation of a low viscous thin layer of fluid at the wall. The liquid-to-solid transition is also a dominant mechanism in wall slip of polymer melts because liquid polymers are elastic fluids which can be in two relaxation states depending on the strain rate. The realization of these mechanisms is determined by polymer melt interaction with the solid wall.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app