JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Breathing with neuromuscular disease: Does compensatory plasticity in the motor drive to breathe offer a potential therapeutic target in muscular dystrophy?

Duchenne muscular dystrophy is a fatal neuromuscular disease associated with respiratory-related morbidity and mortality. Herein, we review recent work by our group exploring deficits and compensation in the respiratory control network governing respiratory homeostasis in a pre-clinical model of DMD, the mdx mouse. Deficits at multiple sites of the network provide considerable challenges to respiratory control. However, our work has also revealed evidence of compensatory neuroplasticity in the motor drive to breathe enhancing diaphragm muscle activity during increased chemical drive. The finding may explain the preserved capacity for mdx mice to increase ventilation in response to chemoactivation. Given the profound dysfunction in the primary pump muscle of breathing, we argue that activation of accessory muscles of breathing may be especially important in mdx (and perhaps DMD). Notwithstanding the limitations resulting from respiratory muscle dysfunction, it may be possible to further leverage intrinsic physiological mechanisms serving to compensate for weak muscles in attempts to preserve or restore ventilatory capacity. We discuss current knowledge gaps and the need to better appreciate fundamental aspects of respiratory control in pre-clinical models so as to better inform intervention strategies in human DMD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app