Add like
Add dislike
Add to saved papers

Neuroprotective potential of glibenclamide is mediated by antioxidant and anti-apoptotic pathways in intracerebral hemorrhage.

The sulfonylurea receptor 1 (SUR1)-regulated NCca-ATP channels were progressively upregulated and demonstrated unchecked opening in central nervous system (CNS) injury, which induced cerebral damage. Glibenclamide (GLI) can block NCca-ATP channels and consequently exert protective effects. Recent studies have found that GLI has antioxidative effects. In this study, we primarily explored the antioxidative effects of GLI in a rat model of intracerebral hemorrhage (ICH). We found that GLI could scavenge free radicals, reduce activated-caspase-3 expression, increase the Bcl-2/Bax ratio, inhibit apoptosis, and improve functional neurological outcomes in a rat model of ICH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app