Add like
Add dislike
Add to saved papers

Self-Bound Quantum Droplets of Atomic Mixtures in Free Space.

Self-bound quantum droplets are a newly discovered phase in the context of ultracold atoms. In this Letter, we report their experimental realization following the original proposal by Petrov [Phys. Rev. Lett. 115, 155302 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.155302], using an attractive bosonic mixture. In this system, spherical droplets form due to the balance of competing attractive and repulsive forces, provided by the mean-field energy close to the collapse threshold and the first-order correction due to quantum fluctuations. Thanks to an optical levitating potential with negligible residual confinement, we observe self-bound droplets in free space, and we characterize the conditions for their formation as well as their size and composition. This work sets the stage for future studies on quantum droplets, from the measurement of their peculiar excitation spectrum to the exploration of their superfluid nature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app