Add like
Add dislike
Add to saved papers

Real-Time Detection of Melatonin Using Fast-Scan Cyclic Voltammetry.

Melatonin is an important hormone whose functions span from regulating circadian rhythm in the brain to providing anti-inflammatory properties in the immune system. Melatonin secretion from the pineal gland is known; however, the mechanism of melatonin signaling in the immune system is not well understood. The lymph node is the hub of the immune system, and melatonin secretion from lymphocytes was proposed to be an important source specifically for regulating cytokine secretion. Methods exist to quantify the concentration of melatonin within biological samples; however, they often suffer from either a lack of selectivity for melatonin over common biological interferences or temporal resolution, which is not amenable to measuring real-time signaling dynamics. Here, we have characterized an electrochemical method for optimal melatonin detection with subsecond resolution using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. The oxidation peaks detected for melatonin were at 1.0, 1.1, and 0.6 V. Evidence for electrode fouling of the tertiary peak was present; therefore, an optimized waveform was developed scanning from 0.2 to 1.3 V at 600 V/s. The optimized waveform eliminated the detection of fouling products on the electrode with a 24 ± 10 nM limit of detection. Melatonin was distinguished between biological interferences, and codetection with the major synthetic precursor, serotonin, was possible. This method was used to detect melatonin in live lymph node slices and provides the first real-time measurements within the lymph node using FSCV. Real-time detection of melatonin dynamics could provide useful information on the mechanism of immunomodulation during inflammatory disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app