Add like
Add dislike
Add to saved papers

Molecular characterization of a stress-induced NAC gene, GhSNAC3 , from Gossypium hirsutum .

NAC genes, specific to plants, play important roles in plant development as well as in response to biotic and abiotic stresses. Here, a novel gene encoding a NAC domain, named as GhSNAC3 , was isolated from upland cotton ( Gossypium hirsutum L.). Sequence analyses showed that GhSNAC3 encodes a protein of 346 amino acids with an estimated molecular mass of 38.4 kDa and pI of 8.87. Transient localization assays in onion epidermal cells confirmed GhSNAC3 is a nuclear protein. Transactivation studies using a yeast system revealed that GhSNAC3 functions as a transcription activator. Quantitative real-time polymerase chain reaction analysis indicated that GhSNAC3 was induced by high salinity, drought and abscisic acid treatments. We overexpressed GhSNAC3 in tobacco by using Agrobacterium -mediated transformation. Transgenic lines produced longer primary roots and more fresh weight under salt and drought stresses as compared to wild-type plants. Collectively, our results indicated that overexpression of GhSNAC3 in tobacco can enhance drought and salt tolerances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app