Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Update on Incorporating Biomarkers with Imaging Findings for the Detection and Management of Cardiotoxicity.

PURPOSE OF REVIEW: Modern cancer therapy comes at a cost of increased risk of cardiotoxicity. The purpose of our paper is to provide an updated review highlighting research incorporating biomarkers and imaging findings for the detection of subclinical cardiac dysfunction and management of cancer treatment-related cardiotoxicity.

RECENT FINDINGS: Biomarkers, particularly troponin, NTproBNP, and myeloperoxidase, have been shown to have a predictive role in the development of cancer treatment-related cardiotoxicity. Early reductions in global longitudinal strain and the more recently reported, circumferential strain, have been shown to be predictive of subsequent cardiotoxicity. Integrating troponin levels with longitudinal strain may have incremental value in predicting future cardiotoxicity. Initiating troponin-guided heart failure therapy following cancer treatment may impact the development of cardiotoxicity. Strain-guided heart failure therapy is currently under investigation. Early detection of subclinical cardiac dysfunction in high-risk cancer patients and subsequent medical intervention using biomarkers and imaging may help to alter the course of cancer treatment-induced cardiotoxicity. Current guidelines and expert consensus offer a general framework for monitoring high risk patients for cardiotoxicity. However, additional research is needed to provide a more sophisticated and structured approach in detecting and managing subclinical cardiac dysfunction with hopes of minimizing subsequent cardiotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app