Add like
Add dislike
Add to saved papers

S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination.

Geminiviruses, such as beet severe curly top virus (BSCTV), are a group of DNA viruses that cause severe plant diseases and agricultural losses. The C4 protein is a major symptom determinant in several geminiviruses; however, its regulatory mechanism and molecular function in plant cells remain unclear. Here, we show that BSCTV C4 is S-acylated in planta, and that this post-translational lipid modification is necessary for its membrane localization and functions, especially its regulation of shoot development of host plants. Furthermore, the S-acylated form of C4 interacts with CLAVATA 1 (CLV1), an important receptor kinase in meristem maintenance, and consequentially affects the expression of WUSCHEL, a major target of CLV1. The abnormal development of siliques in Arabidopsis thaliana infected with BSCTV is also dependent on the S-acylation of C4, implying a potential role of CLAVATA signaling in this process. Collectively, our results show that S-acylation is essential for BSCTV C4 function, including the regulation of the CLAVATA pathway, during geminivirus infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app