Add like
Add dislike
Add to saved papers

Rapid and sensitive detection of Pseudomonas aeruginosa using multiple cross displacement amplification and gold nanoparticle-based lateral flow biosensor visualization.

Pseudomonas aeruginosa causes nosocomial infections of burn patients and other immunocompromised individuals, but the conventional diagnosis of P. aeruginosa infection depends on time-consuming culture-based methods. Hence, a simple, fast, sensitive technique for detection of P. aeruginosa using multiple cross displacement amplification (MCDA) and gold nanoparticle-based lateral flow biosensors (LFB) was developed. By using this technique, the reaction could be completed at an optimized constant temperature (67°C) within only 40 min. The reaction product could be detected visually using an LFB, eliminating the need for special equipment. The P. aeruginosa-MCDA-LFB method was highly specific, and accurately distinguished P. aeruginosa from other pathogens. Just 10 fg of genomic DNA template (from pure culture) could be detected. The assay could also detect P. aeruginosa in clinical sputum samples and showed the same sensitivity and specificity as the reference (culture-biochemical) method. In the future, this rapid, simple and accurate P. aeruginosa-MCDA-LFB technique might be applied in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app