Add like
Add dislike
Add to saved papers

ECG-Based Reconstruction of Heart Position and Orientation with Bayesian Optimization.

Respiratory motion is known to cause beat-to-beat variation of the ECG. This observation suggests that it may be possible to use this variation to track position and orientation of the heart. Electrocardiographic Imaging (ECGI) would benefit from such a reconstruction since one contribution to errors in its solutions is respiratory motion of the heart. ECGI solutions generally rely on prior computation of a "forward" model that relates cardiac electrical activity to ECGs. However, the ill-posed nature of the inverse solution leads to large errors in ECGI even for small amounts of error in the forward model. The current work is a first step towards reducing those errors using a nominal forward model and the ECG itself. We describe a method that can reconstruct cardiac position / orientation using known potentials on both the heart and torso. Our current implementation is based on Bayesian Optimization and efficiently optimizes for the position / orientation of the heart to minimize error between measured and forward-computed torso potentials. We evaluated our approach with synthesized torso potentials under a model of respiratory motion and also using potentials recorded in a tank experiment on a canine epicardium and the tank surfaces. Our results show that our method performs accurately in synthetic experiments and can account for part of the error between forward-computed and measured ECGs in the tank experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app