Add like
Add dislike
Add to saved papers

Suppressed topological phase transitions due to nonsymmorphism in SnTe stacking.

Scientific Reports 2018 June 22
We combine first principles calculations with a group theory analysis to investigate topological phase transitions in the stacking of SnTe monolayers. We show that distinct finite stacking yields different symmetry-imposed degeneracy, which dictates the hybridization properties of opposite surface states. For SnTe aligned along the [001] direction, an (even) odd number of monolayers yields a (non)symmorphic space group. For the symmorphic case, the hybridization of surface states lead to band inversions and topological phase transitions as the sample height is reduced. In contrast, for a nonsymmorphic stacking, an extra degeneracy is guaranteed by symmetry, thus avoiding the hybridization and topological phase transitions, even in the limit of a few monolayers. Our group theory analysis provide a clear picture for this phenomenology and matches well the first principles calculations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app