Add like
Add dislike
Add to saved papers

Exogenous N-acyl homoserine lactones facilitate microbial adhesion of high ammonia nitrogen wastewater on biocarrier surfaces.

Startup of biofilm process triggered by initial adhesion of bacteria is difficult in high ammonia nitrogen wastewater treatment. In this study, the influence of two commonly used N-acyl homoserine lactones (AHLs), N-Hexanoyl-l-homoserine lactone (C6-HSL) and N-Octanoyl-l-homoserine lactone (C8-HSL), on the adhesion of soluble macromolecules and bacteria in four types of high ammonia nitrogen wastewater to surfaces of model biocarriers (i.e. polystyrene, polyamide and polyethylene terephthalate) was investigated by using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. Results showed that the adhesion was enhanced by the addition of exogenous AHLs and there was more microbial retention attributed by C8-HSL. Greater deposition amount was generally found on PS and better enhanced performances of the adhesion were found on PA surface. Furthermore, viscoelastic film formed under synchronous high-low salinity and organic content and dominant bacteria of real wastewater determined the role of exogenous AHLs. The method of adding moderate amount of exogenous AHLs into bioreactors has important implications for accelerating the startup process treating high ammonia nitrogen wastewater by biofilm process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app